
 Basic Mac PPC Cracking
by Dot Com
December 12, 1997

I have read many cracking tutorials and have noticed they are
pretty hard to understand. I first learned cracking thru
Smeger's excellent text, "The Kool Krack Tutorial". The learning
curve was pretty tough at first but I will attempt to get you
rolling as quickly as possible thru examples. In this part we
will use Nosy to bypass a typical serial number dialog box and
other annoying alerts. There are many different approaches to
bypassing a dialog box but this is one basic method I use the
most often because its damn easy.

Software you will need

You will need the following software before you begin this
tutorial:

Resorcerer 2.0
Nosy II 8/97
Macsbug 6.5.4a3c1
THINK Reference 2.0
WebCollage 1.0

Resorcerer is a resource editor like ResEdit. I prefer
Resorcerer because of its excellent search features. We will use
Resorcerer to modify code and checkout dialog boxes. Nosy is a
PPC disassembler and will convert all assembly code into
something we can read and understand. Macsbug is a debugger and
dissassember that will allow us to see what code is executing.
You will not need Macsbug in this lesson but get it anyway. THINK
Reference is a handy utility that tells you all about Mac Toolbox
Traps (more on this in a bit). You will also need to locate a
copy of StarNine's WebCollage 1.0 from your local warez site (it
may also be downloadable from http://www.starnine.com). This is
the app that you are going to attempt to crack.

Basic Assembly Language

I have to admit that I know nothing about assembly language (I
dont even know that the hell it is!) but I have not found it
necessary to know a whole lot, so I wont bore you with all that

stuff.

There are really only 4 pieces of assembly knowledge that you
really need to know (at least for now) with the first being
conditional branches.

Conditional branches are lines of code that compare values and go
to or "branch" to another line of code. If your familiar with
the old BASIC language its like an IF THEN statement. IF
<serialnumber> = <12345> THEN <linenumber>. There are two types
of branches we need to know which are BNE (branch if not equal)
and BEQ (branch if equal). The machine language equivalent codes
for these are 40 and 41. What the hell is machine language you
say? Hell if I know! This will make sense later so bare with me.
We use branches to force the program to do something different
from what it normally does, kinda like a detour. A condtional
branch statement looks like this:

4182 0014 bc IF,cr0_EQ,laq_3

so this line of code branches if the value cr0 is equal and goes
to procedure laq_3 (in Macsbug it will be a numeric value or line
number, more on that later)

The next type of assembly we need to know is NOP which stands for
No Operation. This is basically a line that does nothing..our
macs just skip over this line. The machine language equivalent is
6000. We use this to delete lines of code. A NOP statement looks
like this:

6000 0000 nop

A line that loads a procedure or subroutine is also a branch but
I feel its a little different than a normal branch. A BL or
"branch load" is just like a GOSUB in ole BASIC and it looks like
this:

4BFF FFDD bl proc13

so this line of code will run all the code in proc13.

And last but not least we need to know LI. What does LI do? I
have no idea, but it means "Load Immediate" I believe. All I know
is that they are useful for seeking out Dialog box ID numbers. A
LI statement looks like this:

38A0 06A4 li r5,$6A4

Using Resorcerer

Upon running WebCollage Editor we of course get the typical
register me dialog box as shown in Figure 1.

ell since we dont seem to have an authorization key handy I guess
that where gonna have to bypass this dialog box somehow and get
the program to load up for us. Most (not all) dialog boxes in an
application have a Dialog ID number. We will use Resorcerer to
locate this number. Load up Resorcerer and load in WebCollage
Editor and select the DLOG Resource and we see Figure 2.

e find that Dialog number 1701 “add key dialog” is the problem.
Sometimes they dont label there dialogs as did StarNine so you
will have to load up each dialog and find the right one. Now we
need to convert the ID number into Hex so we can locate it in
Nosy. What is Hex anyway you say? Well you guessed it, I dont
know. I guess its just numbers that assembly code can recognize,
who knows? Anyway go to the Edit Menu and select “Value
Converter” and type in 1701 in the Long field as seen in Figure
3.

ow in Hex, 1701 = 06A5. Now its time to load up Nosy and snoop
around the Dialog traps and try to locate the annoying procedure
that calls Dialog 1701.

Toolbox Traps

Smeger described Toolbox Traps better than I can:

The Toolbox is a set of routines that mac programmers can use to simplify
common tasks, making writing code really simple 'cause you don't have to do
anything. A trap is a system routine that performs some sort of action, such
as drawing a menu bar or a window. Traps are stored within a program as a
single instruction. When the trap is called, the program will perform the
trap, then continue execution normally.

Got That? Good. For a complete listing of Toolbox Traps and what
they do I use the THINK Reference app. You should be able to find
it no problem. The trap calls we are interested in are any traps
relating to Dialog Boxes such as GetNewDialog, GetDialogItem, etc.
GetNewDialog seems to be the best one and I use it everytime.

Using Nosy

Nosy is a great program that will disassemble the Data Fork
(where PPC code is located) into a format that we can read.
First duplicate WebCollage Editor and rename the copy to just
Editor (Nosy only accepts 20 character filenames) and load it
into Nosy. Select the <DF> when Nosy asks you to select a
resource. Press Continue for the Treewalk optons and let Nosy
explore. Nosy will take a few minutes and dissassemble the
program. The time it takes varies on the filesize. Sometimes
Nosy will not be able to dissassemble part of a program and
Macsbug will have to be used instead which will be covered in
Part 2 of this series. In this case Nosy loads the Editor fine
and we get a window displaying all the Code Blocks as in Figure
4. Keep scrolling down and you will find all the Toolbox Traps
used in the application.

croll down until you find .GetNewDialog_GL_. Select it and press
Command-R (also under the Display Menu: Show Refs to). This will
show all procedures that reference the GetNewDialog trap. We now
get the window in Figure 5.

ell we lucked out as only 3 procedures have new dialog calls.
Sometimes there can be 20 or more and you will have to snoop thru
them all. Anyway lets check out proc3233. Select it and press
Command-D (also under Display: Code Blk) and we get Figure 6.
Scroll down a bit until you find a BL for the .GetNewDialog_GL.

otice above the first GetNewDialog we have a:

8C8C0: 3860 06A5 li r3,$6A5

Thats our man as we see Hex ID 6A5 being loaded just before the
dialog call. Bypassing this routine should solve the problem
right? Nope. Notice the branch at address 8C8BC: bc
IF,cr0_EQ,mkg_1. If we reroute that branch to mkg_1 it still loads
the dialog and there are no branches at the start of proc3233 to
bypass all of this. So what do we do now? We bypass this whole
procedure altogether. Scroll back up to the top of proc3233 and
we see the following:

;-refs - proc3232 proc3250

This shows all the references to this procedure. Lets Command-D
proc3232 and we see that nothing is apparant but the BL to proc3233.
What we want to find is a conditional branch before loading
proc3233. Its not here so lets checkout the only ref to proc3232
which is proc3231. Well no conditional branches in proc3231 as
well but an interesting LI line referencing $6A4. If we type 6A4
into the Value Converter in Resorcerer we find that its doing
something with Dialog 1700 “key list dialog”, definetly something
we want to avoid. The only ref to this procedure is proc20, lets
check it out. Well, proc20 is a big one. Do a search for proc3231
with a Command-F. Type in proc3231 and it we find the contents in
Figure. 7.

f we keep clicking the Find button we see that this is the only
occurance of proc3231 in this procedure. Well there it is; a
conditional branch above the call to proc3231:

4182 0048 1001DA8 bc IF,cr0_EQ,lau_9

Notice the NoteAlert in Figure 7, the LI above it calls $14D. Go
back to the Value Converter in Resorcerer and type in 14D and we
get 333. Select the ALRT (Alert dialogs are located here)
resource type and double click on 333 and we get a nice ALRT
saying that "None of the authorization keys are valid.
Please contact StarNine for more information". Well this has got
to be the right place. It looks like if we force the application
to reroute to lau_9 then we should avoid the serial number dialog
box and the ALRT. All we have to do is change it from a BEQ to a
BNE. How do we do that? Easy. First lets examine the code around
the line we want to change:

4808 D7B5 108F508
 bl proc3267
6000 0000 nop
7C60 0735

 extsh. r0,r3
4182 0048 1001DA8

 bc IF,cr0_EQ,lau_9
3860 FFFF li r3,-1
3880 004C li r4,76

See the number 41820048? That is the assembly code for this
line. What we are going to do is search the <DF> in Resorcerer
for this line. What we find is that there are many 41820048’s in
the <DF> so we need to copy down the surrounding code so we make
sure we are in the right place. The surrouding code would be
600000007C600735418200483860FFFF3880004C

Modifiying Code in Resorcerer

To make the change we will use Resorcerer. In Resorcerer and
select the <DF> resource type and do a Command-F and copy in the
code with NO spaces in between the codes as in Figure 8.

elect the “Of Type <DF>” and “Hex” checkboxes and click Find.
What we get is the window in Figure 9.

ow we are going to change 41820048 to 40820048, the exact
opposite (a BEQ to a BNE). Select the first two digits (41) of
the code and type in 40.

Completing the Crack

Close out of everything and save changes and lets see what
happens. Well our crack is still not complete as ole ALRT 333
still pops up. We did, however, got rid of the serial dialog.
Lets go back to Nosy and checkout all the refs to .NoteAlert_GL_
and we find only two: proc6 and proc20. Well we already bypassed
the call in proc20 so lets checkout proc6 and lo and behold we
have a conditional branch above the LI call to ALRT $14D in Figure
10.

gain, it looks like if we change:

4182 0044 10008A0 bc IF,cr0_EQ,lag_1

we can bypass the ALRT. Do the same as before and copy the code
around it and make the change to 4182044 to 4082004 and see what
happens.

Bingo! the program loads up with no problems. One thing you
might notice is the menu command “Edit Authorization Keys” under

the Edit menu. You might want to modify the Edit menu in
Resorcerer under the MENU resource type and delete it. This will
make sure that nobody can get to any annoying serial number
number dialogs and have the program quit.

Adios

Hopefully this was helpful and you are well on your way to
cracking your own software. You can now apply your newly learned
cracking skills to the WebCollage Assembler.

In Part 2 we will cover basic Macsbug cracking when Nosy poops
out on us (a common occurance). If you need help or have
questions you can usually find me on #macfilez.

Good Luck,

Dot Com

Special thanks to sm00th who got me started in cracking and Dream for giving
me inspiration to write this.

